

Mock Paper Mark Scheme

Advanced Subsidiary/Advanced GCE General Certificate of Education

Question number	Scheme	Ν	Iarks
1. (<i>a</i>)	$\overline{X} \sim N\left(100, \frac{14^2}{10}\right)$ Normal	B1	
	100, $\frac{14^2}{10}$	B1	(2)
(<i>b</i>)	$P(\overline{X} - 100 > 5) = P(\overline{X} > 105) + P(\overline{X} < 95)$	M1	
	$= 2P(\overline{X} > 105)$		
	$= 2P\left(Z > \frac{105 - 100}{\sqrt{\frac{14^2}{10}}}\right)$	A1	
	= 2P(Z > 1.13)		
	= 0.2584	A1	(3)
			(5 marks)
2	H. No association between type and cover		
2.	H ₀ : No association between type and coverH ₁ : Association between type and cover(both)	B1	
	$\alpha = 0.05; v = 2;$	M1 A1	
	Critical value = 5.991	B1	
	$\sum \frac{(O-E)^2}{E} = 11.09$		
	Since 11.09 is in the critical region, there is evidence of association between	M1 A1	(6)
	type of book and type of cover		(6 marks)

Question number	Scheme	Marks
3. (<i>a</i>)	H ₀ : $\mu_{sp} = \mu_{st}$; H ₁ : $\mu_{sp} > \mu_{st}$;	B1 B1
	$\alpha = 0.05$; critical region: $z > 1.6449$ standard error = $\sqrt{\frac{22^2}{100} + \frac{31^2}{80}} = 4.1051$	B1 M1 A1
	$z = \frac{75 - 64}{4.1051} = 2.68$	M1 A1
	Since 2.68 is in the critical region there is evidence to reject H_0 and conclude that the special diet is more effective in reducing blood cholesterol.	M1 A1√ (9)
(b)	Drop in blood cholesterol levels are normally distributed, or Central Limit Theorem can be applied, or standard deviations of the populations are 22 and 31 two	B1 B1 (2)
		(11 marks)
4. (<i>a</i>)	H ₀ : Poisson distribution is a suitable model H ₁ : Poisson distribution is not a suitable model both	B1
	From these data $\lambda = \frac{52}{80} = 0.65$	M1 A1
	Expected frequencies 41.76, 27.15, $\underbrace{8.82, 2.27}_{11.09}$ 80 × P(X = x)	M1 A2/1/0
	Amalgamation	M1
	$\alpha = 0.05$, $\nu = 3 - 1 - 1 = 1$; critical value = 3.841	$B1^{\sqrt{2}}; B1^{\sqrt{2}}$
	$\sum \frac{(O-E)^2}{E} = 1.312$	M1 A1
	Since 1.312 is not the critical region there is insufficient evidence to reject H_0 and we can conclude that the Poisson model is a suitable one.	M1 A1 $^{\checkmark}$ (13)
		(13 marks)

Question number	Scheme	Ν	Iarks
5. (<i>a</i>)	$E(R) = E(X) + 4E(Y) = 8 + (4 \times 14) = 64$	M1 A1	(2)
<i>(b)</i>	Var (<i>R</i>) = Var (<i>X</i>) + 16 Var (<i>Y</i>) = $2^2 + (16 \times 3^2)$	M1 A1	
	= 148	A1	(3)
(c)	$P(R < 41) = P\left(Z < \frac{41 - 64}{\sqrt{148}}\right) = P(Z < -1.89)$	M1 A1	/
	= 0.0294	A1	(3)
(<i>d</i>)	$Var(S) = 3 Var(Y) + (\frac{1}{2})^2 Var(X)$	M1 M1	
	= 27 + 1	A1	
	= 28	A1	(4)
			(12 marks)
6. (<i>a</i>)	Stratified sampling	B1	(1)
<i>(b)</i>	Uses naturally occurring (strata) groupings	B1	
	e.g. variance of estimator of population mean is usually reduced, either individual strata estimates available	B1	(2)
(<i>c</i>)	$\overline{x} = \frac{(12 \times 12.6) + (12 \times 14.1) + (8 \times 10.2)}{32}$	M1 A1	
	x = 32 = 12.56	A1	(3)
<i>(d)</i>	Confidence interval is	M1	
	$12.56 \pm 1.96 \times \frac{2.48}{\sqrt{32}}$ 1.96	B1	
		A1	
	i.e. (11.70, 13.42) accept (11.7, 13.4)	A1	(4)
<i>(e)</i>	12 is within the confidence interval; so the time spent by these students is in		(ד)
	agreement with the suggestion of the member of staff.	B1; B1 (2)	
			(12 marks)

Question number	Scheme	Marks
7. (<i>a</i>)	$H_0: \rho = 0, H_1: \rho > 0$	B1 B1
	$\alpha = 0.01$, critical value = 0.7887	B1
	Since 0.774 is not in the critical region there is insufficient evidence of positive correlation.	M1 A1 (5)
(b)	e.g. R_T 3 4 8 2 1 5 7 6 Ranks R_A 2 5 7 3 1 4 6 8 All correct	M1 A1
	$\sum d^2 = 10$	M1 A1
	$r_s = 1 - \frac{6 \times 10}{8 \times 63} = 0.881$	M1 A1 (6)
(c)	$H_0: \rho = 0, H_1: \rho > 0$ both	B1
	$\alpha = 0.01$; critical value: 0.8333	B1
	Since 0.881 is in the critical region there is evidence of positive correlation.	A1 √ (3)
(d)	Because it makes no distributional assumptions about the data or order is more important than the mark	B1
	Product moment correlation assumes bivariate normality and it is very unlikely that these scores will be distributed this way.	B1 (2)
		(16 marks)